In aircraft assembly plants, robotic-drill-and-fill systems are increasingly taking over the tasks of drilling, countersinking, and fastener installation. To achieve high precision and consistency of the drill-and-fill operation, assembly plants are incorporating
in-process measurements
throughout this multi-step process.
在飞机装配厂,机器人钻孔和填充系统越来越多地接管了钻孔、埋头孔和紧固件安装的任务。为了实现钻孔和充填作业的高精度和一致性,装配工厂在这个多步骤过程中纳入了过程中测量。
This article concentrates on in-process countersink measurements provided by NOVACAM non-contact 3D measurement systems. Their in-process integration capabilities are also discussed.
本文重点介绍由 NOVACAM 非接触式 3D 测量系统提供的过程中埋头孔测量。还讨论了它们的进程内集成功能。
The quality of drill-and-fill processes significantly impacts the performance of airframe joints
钻填工艺的质量明显影响机体接头的性能
Precision countersinking involves paying attention to:
精密埋头孔需要注意:
Countersink inside diameter (ID) geometry
– e.g., included angle of the countersink, countersink diameter (opening), depth of countersink
埋头孔内径 (ID) 几何形状- 例如,埋头孔的夹角、埋头孔直径(开口)、埋头孔深度
Countersink orientation with respect to drilled panel surface
– the countersink axis should be normal to the panel surface
相对于钻孔面板表面的埋头孔方向- 埋头孔轴应垂直于面板表面
Countersink alignment with respect to the rivet hole– the two should be aligned (coaxial)
埋头孔相对于铆钉孔对齐——两者应对齐(同轴)
Defects
such as burrs or excessive chatter.
毛刺或过度颤动等缺陷。
Joint strength will be affected when countersink angle is too small or if the rivet hole and countersink are not concentric.
埋头孔角度太小或铆钉孔与埋头孔不同心都会影响接头强度。
Novacam manufactures three 3D metrology systems that provide assembly plant managers with automated measurements of countersinks.
The systems are all based on the same
technology, and differ by the type of optical probe(s) they use:
Novacam 制造三种 3D 计量系统,为装配厂管理人员提供埋头孔的自动测量。这些系统都基于相同的技术,不同的是它们使用的光学探头的类型:
The BOREINSPECT system
uses a small-diameter
rotational scanning (RS)
probe to enter inside each rivet hole to scan both the rivet hole and the countersink. Scan profiles can be linear, circular or spiral, or any combination thereof.
Cycle time will depend on the user-selected scan profiles.
BOREINSPECT 系统
使用小直径旋转扫描 (RS)探头进入每个铆钉孔内部,以扫描铆钉孔和埋头孔。扫描轮廓可以是线性的、圆形的或螺旋形的,或者它们的任何组合。周期时间将取决于用户选择的扫描配置文件。
The SURFACEINSPECT system
uses a
galvo scanning (GS) probe
to scan the countersink area from above in a raster manner. For applications where only the countersink needs to be measured and not the rivet hole,
the GS probe provides the shortest countersink acquisition cycle time, at 1 or 2 seconds.
The same probe can be used to measure the flushness of the rivet head post-installation.
The GS probe is able to measure countersinks from standoff distances of up to 100-400mm.
2. SURFACEINSPECT 系统
使用振镜扫描 (GS) 探头以光栅方式从上方扫描埋头孔区域。对于只需要测量埋头孔而不需要测量铆钉孔的应用,GS 探头提供最短的埋头孔采集周期时间,为 1 或 2 秒。 同样的探头可以用来测量安装后铆钉头的平整度。GS探头能够测量距离达100-400mm的埋头孔。
3. The RIVETINSPECT system
comprises both
the RS probe and the GS probe,
which are used in alternation. The RS probe measures the rivet hole ID, and the GS probe measures the countersink and the rivet head flushness.
3. RIVETINSPECT 系统包括交替使用的RS 探头和 GS 探头。RS 探头测量铆钉孔内径,GS 探头测量埋头孔和铆钉头平整度。
The
RS and GS probes
are small and fiber-based and therefore easily integrated with a robot head as measurement end-effectors.
The probes acquire 3D point clouds by scanning surfaces in a point-by-point manner at up to 100,000 3D point measurements per second.
The acquired 3D point cloud is analyzed with industry standard GD&T software, InnovMetric PolyWorks® Inspector.
RS
和 GS 探头体积小且基于光纤,因此很容易与机器人头部集成作为测量末端执行器。探头通过以每秒高达10万个 3D 点测量的速度逐点扫描表面来获取 3D 点云。使用行业标准 GD&T 软件 InnovMetric PolyWorks® Inspector 分析获取的 3D 点云。
Galvo scanner (GS) probe (top) and rotational scanner (RS) probe (bottom)
振镜扫描仪 (GS) 探头(顶部)和旋转扫描仪 (RS) 探头(底部)
Below are a few examples of 3D countersink measurements available with NOVACAM systems.
以下是 NOVACAM 系统可用的 3D 埋头孔测量的几个示例。
In the image gallery below, please
请在下面的图片库中
Click on arrows on the sides of images to move through examples.
单击图像两侧的箭头以浏览示例。
Hover with the mouse on each selected image to read image description.
将鼠标悬停在每个选定的图像上以阅读图像描述。
PreviousNext
The above images show 3D geometry measurements of:
上图显示了以下的 3D 几何测量:
Countersink angle
埋头孔角
Depth of countersink
埋头孔深度
Depth of rivet hole
铆钉孔深度
Total stack height
总堆叠高度
Countersink total runout
埋头孔总跳动
Countersink diameter (opening)
埋头孔直径(开口)
Rivet hole diameter
铆钉孔径
Perpendicularity of the countersink to the surface plane. (In the example, a besfit plane is used to stand in for the surface plane. The bestfit was based on the first point measured on each profile.)
埋头孔与表面平面的垂直度。(在本例中,一个拟合平面代替表面平面。最佳拟合是基于在每个轮廓上测量的第一个点。)
Concentricity (coaxiality) of the countersink relative to the rivet hole.
The angle between the countersink and rivet hole axes was measured to be 0.993° (180°-179.007°).
埋头孔相对于铆钉孔的同心度(同轴度)。埋头孔和铆钉孔轴线夹角经测量为 0.993°(180°-179.007°)。
Angle of countersink profile relative to rivet hole profile (125.087°).
埋头孔轮廓相对于铆钉孔轮廓的角度 (125.087°)。
Notes on countersink defects
关于埋头孔缺陷的注意事项
Chatter is evident on both the circular profile and a high-density spiral scan of the countersink. NOVACAM chatter analysis software is available to automatically
analyze and quantify chatter
defects from the acquired 3D data.
在埋头孔的圆形轮廓和高密度螺旋扫描中,颤振都很明显。NOVACAM 颤振分析软件可用于根据采集的 3D 数据自动分析和量化颤振缺陷。
Other defects (dents, burrs, etc.) on the countersink
are easy to visualize and measure based on the acquired high-precision 3D point cloud.
基于获取的高精度 3D 点云,埋头孔上的其他缺陷(凹痕、毛刺等)易于可视化和测量。
Notes on rivet head flushness measurement
铆钉头平整度测量注意事项
As shown (in blue image), a post-installation scan of the countersink area provides a good visual check of flushness.
The analysis of the flushness of the rivet head compared to the surrounding plane can be fully automated.
如图所示(蓝色图),埋头孔区域的安装后扫描提供了良好的平整度视觉检查。可以全自动分析铆钉头与周围平面的平整度。
Not shown but available bonus measurement – roughness inside rivet holes
未显示但可用的额外测量 - 铆钉孔内的粗糙度
With the above RS probe,
QC managers can also measure 2D roughness (Ra >= 32 µm)
inside the rivet hole. Read about measuring
linear profile roughness, and
circumferential ID roughness
in hard-to-reach spaces.
使用上述 RS 探头,QC 经理还可以测量铆钉孔内的2D粗糙度 (Ra >= 32 µm)。阅读有关在难以到达的空间中测量线性轮廓粗糙度和圆周内径粗糙度的信息。
NOVACAM 3D metrology systems for drill-and-fill processes are versatile and rugged enough for plant-floor deployment.
用于钻填工艺的 NOVACAM 3D 计量系统用途广泛且坚固耐用,适合工厂部署。
The systems measure with small-footprint scanning optical probes
该系统使用小尺寸的扫描光学探头进行测量
The probes can be deployed at a distance from the detector
(MICROCAM interferometer), since the two are connected with an optical fiber. The fiber can be several meters long
探头可以部署在与探测器(MICROCAM 干涉仪)有一定距离的位置,因为两者通过光纤连接。纤维可长达数米
The probes are resistant environmental challenges
– e.g., they are not affected by ambient lighting or air perturbation
探头可抵抗环境挑战——例如,它们不受环境照明或空气扰动的影响
The probes can measure even in hostile environments
that are radioactive, cryogenic, or very hot, in vacuum or evaporation chambers
探头甚至可以在真空或蒸发室中的放射性、低温或高温等恶劣环境中进行测量
User-configurable scan and analysis definitions (recipes) may be invoked automatically
through a PLC
可通过 PLC自动调用用户可配置的扫描和分析定义(配方)
An API is available
to accommodate a wide variety of online and offline applications.
API 可用于适应各种在线和离线应用程序。
Exported results may be integrated with SPC
software
输出结果可与 SPC软件集成
More on automation support with NOVACAM systems is presented in this recent
blog article.
更多有关于 NOVACAM 系统的自动化支持,请参阅在最近的博客文章。
Schematic of NOVACAM BOREINSPECT system, suitable for automated and robotized riveting and countersinking 3D metrology.
NOVACAM BOREINSPECT 系统示意图,适用于自动化和机器人化的铆接和埋头孔3D测量。
©2021 Novacam Technologies股份有限公司保留所有权利。
Tel/联系电话:
029-33313798
185-0928-7420
Address/地址:
陕西省西咸新区空港新城临空产业园
16号楼(2期6号楼)一单元三楼
Email/邮箱:2403986164@qq.com
首页
产品中心
应用领域
服务与支持
新闻资讯
关于我们
技术答疑
LCI的优点
LCI如何运作
定制解决方案
诺飞勘计量视频
诺飞勘操作视频